

Bash/Unix Command Cheat Sheet
Leaning how to utilize the command line in Unix is crucial for navigating your computer
as well as making, deleting, and searching your files. Many of these commands will
come in handy on a very regular basis, so they should become second nature rather
quickly. Until then, feel free to use this sheet!

Before you get started:

% cp ~premapta/setup ./
% tcsh setup

The above command will set up some directories as well as your .cshrc file. This file is
important, as it has in it settings that will point your computer where to important files.
We will do this together in class and it only needs to be done once.

Some General Notes and Definitions
I will be using the term “directory”. Think of these as files, or places on your computer.
For example, your desktop is a directory. A folder on your desktop is a directory within
the desktop directory. etc, etc....

Your “home” directory is your starting place. Whenever you first open up the terminal,
you start from here. Often, this is denoted by a “~”. To go back to your home directory:

% cd ~ or even just % cd

An object’s “path” means its location on the computer (think of it as an address that tells
you exactly where something is). For example, a file named “file.txt” in the directory
“text_files” in the folder “MyStuff” on your Desktop would be:

~/Desktop/MyStuff/text_files/file.txt

Think of your path like a stream. Your home directory is the highest point and
everything flows out from there (i.e. everything is “down stream”). Everything within a
directory is “down stream” from that directory.

Any command that takes a file or directory name as input can also take a path as input.
For example, the following lines do the same thing (they remove the file called “file.txt”)

% rm file.txt
% rm ~/Desktop/MyStuff/text_files/file.txt

When you want to perform an action on multiple files in a directory, using “ * ” is useful.
% rm * removes all files in a directory (dangerous!)
% rm *.txt removes all files with names that end in ‘.txt’

% rm test.* removes all files with names that start with “test.”
% rm test*.txt removes files with names that start with “test” and end with “.txt”

Many of the commands discussed below have options connected with them. Options
are usually denoted by upper or lowercase letters (and sometimes numbers) after the
command, usually preceded by a ‘-’. For example,

<command> -[option1][option2]

If you forget the exact syntax to use with a command, or need to find what options are
available, use the man command. For example:

% man ls

This will give you the manual page for the ls command, including a list of the available
options and their actions.

Tab completion is very useful. When you are typing in a command or the name of a
file, hitting tab will have the computer attempt to auto complete what you were typing
based on the available options. If there is more than one option, it will give you a list of
the possible commands/files. For example, type “ip[TAB]”. The computer gives you a
list of all files, directories, and commands that start with “ip”. Type in “ipy[TAB]” and
the computer auto completes the command to “ipython”.

__
Listing files in a directory

% ls Gives a list of (almost) everything
 in your current directory

 % ls -a Lists everything in the directory
 (including files that start with a ‘.’)

 % ls -l Lists Things in an up-down list
 with some information, like when
 the file was last edited and the
 size of the file

 % ls -la Does both options!
__
Navigating directories

% cd [directory path] Moves you to a new directory

 % cd ../ Moves you “up” one directory
 % cd ../../ Moves you “up” two directories
%pwd Shows you where you are (i.e.
 your current directory’s path)

% which [command] Tells you the location of the
 executable you are actually
 running when you type in a
 command.
__
Making and moving files and directories

% mkdir [directory name] Make a new directory within your
 current directory

% rmdir [directory name] Remove a directory with the
 specified name. This will only
 work on empty directories

% rm [file name] Remove a file with the specified
 name. Will not work on
 directories

 % rm -rf [file name] Removes a file with the specified
 name. This WILL work on
 directories that are not empty.

% cp [file1] [file2] copy file1 to file2

% mv [file1] [file2] moves file1 to file2. This can be
 used to move the location of a file
 or it can be used to rename files.

% wget [webaddress of file] Download a file from the internet
 into your current directory
__
Writing and Reading Files

% echo hello prints out “hello” to the screen

 % echo hello > [file] opens a file and prints “hello” to
 it. This will overwrite the file and
 delete whatever was in it at first

 % echo hello >> [file] Same as above, but it will append
 the file rather than overwrite it

% cat [file] Print out the contents of a file

 % cat [file1] > [file2] Print the contents of file1 to file2
 (overwriting file2)

 % cat [file1] >> [file2] Append file2 with the contents of
 file1

% grep [something] [file] print out the lines in file that
 include the string “something” in
 the line

% more [file] View the contents of a file. Better
 than cat if the file is long. Push
 spacebar to scroll down

% tail -[number] [file] View the last [number] of lines of
 a file

% head -[number] [file] View the first [number] of lines of
 a file

% wc [file] Prints number of lines, words,
 and size of file
__
Sorting Streams
% sort –k number [file] | more Alphabetical sort, where number
 refers to the column.

% sort –n –k number [file] | more String numerical sort.

% sort –g –k number [file] | more General numerical sort.

__
Making “tar balls” (compressed files)
% tar cfz filename.tar.gz [list of files] Compress files into
 filename.tar.gz. (note the
 lack of a “-” before the cfz
 option here....)

% tar xfz filename.tar.gz Decompress filename.tar.gz and
 put all the files in it into your
 current directory
__
Some examples using “piping” (“|”)
% cat [file] | grep word Print the lines in file that include
 “word” in the line

% grep word [file] | wc Gives the number of lines, words,
 and size of the portion of file that
 grep returns as having “word” in
 the line

Checking the memory usage on your machine
Sometimes you will run commands that will push your machine to its limit. Or, you
might be using a shared device and want to avoid hogging all the memory for yourself.
To check what processes are being done by your machine type in the command

%top

To only look at processes you are running, type

%top -u [username]

This will cause some information to pop up on your terminal. For example:

top - 09:05:39 up 23 days, 21:18, 7 users, load average: 0.10, 0.04, 0.00
Tasks: 223 total, 1 running, 222 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.4%us, 0.3%sy, 0.0%ni, 99.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 16247332k total, 2899880k used, 13347452k free, 162968k buffers
Swap: 8388600k total, 4k used, 8388596k free, 1420460k cached

The first couple lines are pretty useless.

The line starting with “Cpu(s)” tells you how your computer is using its CPUs. Really, the
only thing relevant here is that if you are running something, if it isn’t using 100% of the
CPUs, then it is technically running inefficiently (though I would say this usually doesn’t
warrant any worry).

The next line is very important. This tells you how much RAM (memory) you are using
(in kilobytes). You want to avoid doing things that push your computer to its limit, so be
mindful of this. “Used” should always be less than “total”.

Finally, the “swap” line can be important. Don’t worry too much about what this means,
just remember that you DO NOT want to be using swap memory. If the “used” swap
memory is INCREASING, then you have a problem on your hands. This is a result of
you using too much memory.

Typing “q” will quit out of the top display.

Logging onto machines from home
Step one: open up a terminal (PC users: download Google Chrome and get the Secure
Shell add on). Remember from class that we need to do some basic setup. Type the
following command to get the correct “config” file on your laptop:

% scp UWNETID@astrolabXX.washington.edu:~/.ssh/config ~/.ssh/

where “UWNETID” is your username and [XX] is numbers ranging from 1 to 29
Type in your password when prompted. Open up the config file in a text editor and put in
your UWNETID where it says UWNETID and type in the astrolabe computer you want to
connect to where it says astrolabXX. Now you should have the proper config file, and in
order to remotely log in all you need to type is the following:

% ssh astrolabXX

Again, enter your password when prompted (will probably be prompted twice). Now you
should be at your home directory on the astro computer! If you want to log out at any
point just type “exit” in the terminal.

Use this when working from home so that all your work stays on the computers here
(also, some programs cannot be used outside of this lab)

Copying things between machines
To do this, use the secure copy command, scp.

In general:

% scp [files you want to copy] username@<other_place>:<path>

You will be prompted for your password before the copying will take place

A specific example:

% scp file premapta@astrolab23@astro.washington.edu:~/python/pro

The above line copies the file “file” to the directory python/pro within the account of
“premapta” on the astrolab23 machine. Recall from above that in order to copy
something FROM an astrolab machine TO your laptop you would do something like the
following:

% scp premapta@astrolab23@astro.washington.edu:~/python/pro/
file .

Where the period at the end just means to copy that file to whatever directory you are
currently in (you could put in a more specific path).

